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In this paper, samples of different sizes were drawn from bivariate distributions with' wide-ranging measures of

skewness. The Hotelling's T2 statistic,n(X - j.J) S-I (X - j.J), was computed for ~ach of the samples. It was

(

2 (n-I) pFn<n-f') (a») :
found out that as the sample size n increases, P T > . decreases for a fixed a and p

. n-p !

= 2. Also for given n, these probabilities tend to be proportional to the skewness iof the distributions. These
findings led to the feasibility of locating the appropriate sample size n so that

(

2 (n-I)PFn<n_f')(a») :
P T > . =a for a given a and for differentmeasuresof skewness.
. n-p :

results are given and supported by a saddlepoint approximation to density functions and an Edgeworth
expansionof multivariate normal distributions. :

1. INTRODUCTION

The Central Limit Theorem states that if samples of size n are drawn from a population with
mean J..l and variance cr2

, then the sampling distribution of the sample mean x is

approximately normally distributed with mean Ilx =Iland O'i ~ 0'2 I, and that this. In
approximation gets better as the sample size increases. A rule of thumb tells us that this
approximation is good for as long as n ~ 30. However, some studies re~eal that knowledge on
the nature of the underlying distribution for the sample helps in determining the value of n
such that the probability coverage be exactly (I - a)x 100%. For insrlmce, if the distribution
of a random variable is U(O, 1), then it is sufficient that n = 1~, and for asymmetric
distributions, such as the exponential distribution, n could be much greater than 30.

i

Boos and Oliver (2000) provided explicit Edgeworth expansions of normal density functions
to illustrate the effects of both skewness and kurtosis of the underlying population on the
accuracy of normal approximations. Sen et al. (1992) offered a discussion of the minimum
sample size needed to ensures the validity of classical confidence intervals for means with
platykurtic distributions. Chen (1995) mentioned how skewness may affect the accuracy of
tests of hypothesis about means of normal populations using the classical t-tests, This paper
investigates the same problem for multivariate populations. :
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In a multivariate case, if XI, X2, .••, X, are random sample from a multivariate normal
distribution with mean !J. and covariance 1:, then the statistic, (X - !J.)'1:-1(X - !J.) has a chi­
square distribution with the corresponding probability coverage:

P(n(X - Jl)'1:-I(X - Jl):S; x:'(a»)= I-a

(I)

if1: is known. [f1: is unknown, then

p(n(x - Jl)'S-I(X - Jl):S; (n-I)p F",I1_
p
(a )J = I-a

(n - p)
(2)

where S is the estimated covariance of pxn matrix X, Fp.n_p(a) is the upper (JOOa)th
percentileof the Fp,n-p distribution.

In the investigation of Boos and Oliver (2000) for univariate populations, it was found out
that the skewness of an underlying distribution varies directly with sample size n for a fixed
a so that,

(3)
This paper wishes to extend this finding to a bivariate setting. Specifically, it intends to
answer the following problem: given a bivariatedistribution, how large should n be so that

(
- - 2(n -I) )

P n(X-Jl)'S-I(X-Jl):S; n-2 Fn,n_2(a ) =I-a

(4)
for a fixed a. Toward this end, we first look into the notion of saddlepoint approximation of
a distribution. We then provide a discussion of the results of a simulation experiment and
show the minimum sample sizes needed for (4) to hold for certain simulated models. We end
the paper with some possible directions for future research.

2. DENSITY APPROXIMATION

Let Kx(l3) be the cumulant generating function for the random variable X, rJ, an nx J vector.
To estimate the density fx(x) using saddlepoint approximation, fx(x) is embedded into an
exponential family and a density in the exponential family is chosen to be approximated. An
approximation of the chosen density results in an approximation of fx(x) since members of
the exponential family differ only by a factor of exp(xrJ - Kx(rJ».

The approximation of fx(x) is finally accomplished upon expanding the chosen member using
the Edgeworth series. The Edgeworth series approximation of a density of a multivariate
random variable X is given as

II"(x) =¢(x, 1:)f I ~ Jl"I/\ .\; (-I)j (h.'I/\'; (x, 1:»
j=O IES(j) ./.

(5)
where ~(x,1:) is the density of a multivariate normal distribution; s is a 1xp vector of integers;
!J.·s are pseudo-moments, and; hs(x,1:) are generalized Hermite polynomials.

-.
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Suppose fx(x) is the underlying density of a random sample XI, X2, ... Xn. Then erJbedding
fx(x) into an exponential family, the following expression for fx(x) is obtained: r

~ ~ ~ T

Ix(x)=1 Ax,p)exp[KxUJ)-P x]
(6)

I

where pis the solution of'K'(B) = x and Kx is the cumulant generating function of fx(x,P),
the chosen member from the exponential family with mean x. '

Approximating fx (x, P) with a normal density with mean 0, we have the following!

r, (x) =exp(n[K x (jJ) - jJT X] '(.!!...-) %det[K .: (jJ)p~ [I + b(jJ) + 0(,:-2)] (7)
\21Z" 2n :

~ ~ I

where b(~) is the tilt measure for f x (x.B) and n, the sample size. Then by Edgeworth
. IexpansIOn, .

••
f (x)= f' '" ..!- 'S""Sj (-I)J d

J

x LJ LJ .,J..L d S s.J=O seS(j) j. X ' ••• dx J

•

=I I ~J..L's""Sj (-I)J[hs,,,.s/O;K
I(jJ»(¢(O,K"(jJ)))

J=O seS(j) j.

=(¢(O,KII(jJ»(I I ~/sl"'Sj (-I)J[hs,,,,sj (O,K"(jJ))]
J=O seS(j) j. :

= (¢(O,K"(jJ»{I+ I I ~J..L.s""Sj(-l)J[hs""sj(O,KII(jJ)}h
J=I seS(j) I' :

Now, using cumulants instead ofpseudo-moments, we get i

fy{x) =($(O,K" (p))(exp(I I ~Ksl"'Sj (-1/ [hS!"'s' (O,K" (~))]))
Nses(j)j! J j

= ($(O,K" (P))[1 + (I I ~Ksl"'Sj (-1/ [h sl...s' (O,K'! (P))])
j=3seS(j) j! J'

+~(f I ~Ksl"'Sj (-1/ [hS!."s.(O;K"(P))Jll
2 j=3ses(j)j! J '

+ .!-(I I ~K'sl"'Sj (-1/ [h sl...s' (O,Ki' (P))J/ + ...
3 j=3seS(j) tt J

=(¢(O,K"(jJ»[1 + (~! i<ijk (-I)hijk (0;K" CB» + ~! i<ijkl h+ (0; K"(jJ» +.,,)

+i(~! i<ijk (-I)hijk (0; K"(jJ» + ~! i<ijkl hijld \O;KII(jJ» +. ,,)2

• + ...]
~ 1 "k ~ !

Since hijk(O,K"W» =0, 3! K'J hijk(O;K"(~» =0. The terms of order O(n· l
) are:

~Kijklh .. (O·K"(A»+".) +_I_KijkKlmoh" (O'KII(A»!
4! IJkl' I-' 2 x 3!3! IJklmo' I-' i

Equating this with 2b(P) , we get "

2b(P) = ~Kijklhijkl(O;KII(P» + ... ) + _l_KijkKlmoh"kl '!(O;KII(P»
4! 2 x 3!3! I) m?

Since

•
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hijkl(O;I) = KjjKkl[3] = KijKkl + KikKjl + KilK jk,

and we know (from McCullagh ,1987) that

hijklmn(O;I) =KijKkIKmn[15],
we then have

2b(P.) = ..!- ~ ijkl( ~ .. ~ [3]) _ 10 ijk ~ Imo( ~ .. ~ ~ [15])
I-' K K\)Kkl K K K\)KkIKmo '

4! 6!
Thus,

b(P~ ) - 1 ~ijkl(~ ~ ) 25 ~ijk~lmo(~ ~ ~ )- -K K··Kkl --K K K··KkIK4 I) 12 I) mo
Since

and ••

•(9)[
b 25b ]

f.Jx) =MVNp(Jl, I ) 1+ ;: - 24~ + O(n-2
)

From (9) the following result is evident:

Hence,

Kijkl(KjjKkl) =b2,p
(see Mardia, 1970), we then have

b(fJ') - ~b - 25 b (8)- 4 2,p 12 I,p

Substituting this to (7), we get

f )11, [ ~b - 25 b ]
!x(x)=exp(n[K x(,8)_,8TX\2: - det[Kx"(,8)r~ 1+ 4 2,p 2n12 I,p +O(n-2 )

=exp(n[Kx (,8) - ,8TX]f ~)~ det[K.: (,8)r~[1+ b2
,p _ 25b l

,p + O(n -2)]
\2Jr 8n 24n

Theorem 1. If f is the underlying distribution of a random sample Xj, X2, ... , X, with Kx(P)
as its cumulant generating function, then fx (x)~ MVNp(~,I) as n ~ 00.

F (9) ' b2p 0.125 h ibuti f h ' ..rom ,SInce ~ =-n-b2,p, t e contn ution 0 b2,p w en n > 1 IS negligible.

Thus, as bl,p approaches to 0, f x (x) ::::::: MVN p(u, I) . Consequently, we have the following
result:

Theorem 2. Let f be the underlying distribution of a random sample X" X2, ' . , X, and let
Kx(P) be a cumulant generating function off. Then fx (x)::::::: MVNp(~,I) as bl,p ~ O. •

•
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(11)

(10)

•

If XI, X2, •.• , X, is a sample of size n from a multivariate normal population with mean f.l.
and sample covariance S, then '

p( (- - )'S-I(- - ) < pen -I) F ()J =I-n x J..L x J..L - nn-r p a a
n-p

for any n and a given a. By Theorem 2, it is expected that if the underlying distribution has
some measure of skewness, then there exists an no such that for some n > no:

p(n(X-J..L)'s-I(X-J..L) '5, pen-I) Fn.n-p(a)J=I-a ;
n-p

for a given a .

A simulation experiment was conducted with the Hotelling's T 2 =n(X - f.l.)'S-1 (X - u)
statistic computed for different sample sizes, viz., 10, 20, and 100 from 1,0 different skewed
distributions. The skewness measures of the distributions were computed from Mardia's
formula:

(12)

•

•

where
_'I -, n - -

gij =(Xi - Xp:- (x j - X), L =I(xi - X)(Xj - X)'/n, ,
i=1 :

with n = 500 and f.l. was estimated using a sample size of 10,000 elements.: Table 1 lists the
bivariate distributions together with their corresponding skewness measures and estimated
population means: I

Table 1. Bivariate Distributions with Different Measures of Skewness.

Bivariate Density Skewness J..L Label,
,

1. !(x,y) =(50/J1Xy)e-50«(InX)~+(lny)~) 0.8937 (1.3~59,1.3904) Lognorm
,,

2. !(x,y) =1.35x-O.ly°.5e-(XOY+p) 1.8196 (11.9398, 2.9580) Weib-l
!

3. lex, y) = [(1 +O.lx)(l +O.ly) - O.I]e-x-y-o.IXy 2.0928 (3.8084,3.8265) Expo-I

4. !(x,y) = x-o·'e-xOY-l.lIy 2.4394 (10,.4837,6.5920) Weib-2
i

5. !(x,y) = 0.000009736x-·999y-.99 e-O.05(x+y) 2.6705 (9~.4583, 6.4384) Gamma

6. lex, y) = [(1 + 2.5x)(l + 2.5y) - 2.5]e-x-y-2.5Xy 2.9400 (2.~860, 2.4350) Expo-2

7. !(x,y) = [(1 + 5x)(1 + 5y) - 5]e-x-Y- h Y 3.6278 (2.;1653, 2.1033) Expo-3

8. ! (x, y) = [(1 + 15x)(1 + 15y) -15]e-x
- y-' h

y 4.7480 (119965, 1.9503) Expo-4

9. !(x,y) =[(1+ 20x)(1+ 20y) - 20]e-X-y-20XY 5.9813 (1[7397, 1.7054) Expo-5

10. lex, y) =[(1 + 30x)(1 + 30y) - 30]e-X-Y-30Xy 7.6703 (1;.8586, 1.8589) Expo-6

It is expected that when the significance criterion a is set the 0.05 level, only about 50 out of
r

. 2(n-l)F (a) :
1,000 WIll be greater than 0,n-2. Table 2 shows the rate at which the Hotelling's

(n - 2) .
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T2 exceeds the tabular F for samples of sizes 10, 20, and 100. The error rate was calculated
here as

2(11 -l)F (a)
#T 2 :[T2 > 11,11-2]

ErrorRate = --'11'"'----...=2'--__

no. of iterates

Table 2. Error Rates of Sample Means on Samples from Skewed Distributions

Bivariate Density Skewness Error Rate (a=O. 05)
Function b l P

n = 10 11 = 20 n = 100

1. Lognorm 0.8937 0.071 0.053 0.046
2. Weib-l 1.8196 0.068 0.062 0.039
3. Expo-l 2.0928 0.064 0.057 0.038
4. We\b-2 2.4394 0.062 0.065 0.039
5. Gamma 2.6705 0.060 0.060 0.045
6. Expo-2 2.9400 0.127 0.074 0.038
7. Expo-3 3.6278 0.089 0.086 0.070
8. Expo-4 4.7480 0.175 0.100 0.062
9. Expo-5 5.9813 0.193 0.119 0.060
10. Expo-6 7.6703 0.211 0.119 0.068

Figure 1 illustrates the relationship between skewness with error rates for varying sample
size.

0.8937 1.8196 2.0928 2.4394 2.6705 2.94 3.6278 ".H8 5.9813 7.6703

SKEWNESS

Figure 1. Relationship Between Error Rates and Skewness

Notice from both Table 1 and Figure 1 indicate that as the skewness coefficients increases,
the error rate for a given sample size also increases. Furthermore, as the sample sizes are
increased, the error rates decrease. We can therefore expect that for some sample size for a
certain skewness coefficient, the 5% error rate can be reasonably attained.

Table 3 shows the minimum values of the sample size n needed in order for the following
inequality to hold

..

•
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(
2(n -l)F (a)]'P n(X - Jl)'S-'(X - Jl) 5: 11./1-2 ~ I-a

(n - 2) :

for a=0.05. Clearly, we see that when the skewness is rather ~mal1, the required sample size
is nearly around the rule of thumb of 30, but with a rather lArge skewness coefficient, we
would need much more than 30. I

Table 3. Required Minimum Sample Size n from Skewed Distributions

Bivariate Density Skewness \ Required n
1. Lognorrn 0.8937 27

2. Weib-l 1.8196 , 30

3. Expo-l 2.0928 34

4. Weib-2 2.4394 32

5. Gamma 2.6705 50

6. Expo-2 2.9400 " 70

7. Expo-3 3.6278 : 132

8. Expo-4 4.7480 : 150

9. Expo-S 5.9813 , 177

10. Expo-6 7.6703
,

200
I

4. FINAL REMARKS

In this study, we consider the effects of sample size and skewness of multivariate populations
to confidence el1ipsoids for population means from a simulation study and from the vantage
point of saddlepoint approximation of the distribution. It was found out that error rates vary
directly with skewness and inversely with sample size. One J1ay want to extend the
simulation runs to cases beyond the bivariate distributions examined here and moreover,
investigate further how the sample size n is affected by both the skbwness and kurtosis of a
multivariate distribution. \
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